在氧化石墨烯的納米孔道中,分布著氧化區(qū)域和納米sp2雜化碳區(qū)域,,水分子在通過氧化區(qū)域時能夠與含氧官能團形成氫鍵,從而增加了水流動阻力,,而在雜化碳區(qū)域水流阻力很小,。芳香碳網(wǎng)中形成的大多數(shù)通路被含氧官能團有效阻擋,從而分離海水中Na+和Cl-等小分子物質(zhì)12, 13,。相比于其他納米材料,,GO為快速水輸送提供了較多優(yōu)越性能,如光滑無摩擦的表面,,超薄的厚度和超高的機械強度,,所有這些特性都提高了水的滲透性。前超濾膜,、納濾膜,、反滲透膜等膜技術(shù),已經(jīng)成功地應(yīng)用到水處理的各個領(lǐng)域,,引起越來越多的企業(yè)家和科學(xué)家的關(guān)注8-11,。GO薄膜在海水淡化領(lǐng)域的應(yīng)用主要是去除海水中的鹽離子,探究GO薄膜的離子傳質(zhì)行為具有更為重要的實用意義,。氧化石墨烯可以有效去除溶液中的金屬離子,。制造氧化石墨技術(shù)
GO的載藥作用也可促進(jìn)間充質(zhì)干細(xì)胞的成骨分化。如用攜帶正電荷NH3+的GO(GO-NH3+)和攜帶負(fù)電荷COOH-的GO(GOCOOH-)交替層疊使其**外層為GO-COOH-,,以這種GO作為載體,攜帶骨形態(tài)發(fā)生蛋白-2(BMP-2)和P物質(zhì)(SP)附著到鈦(Ti)種植體上,,結(jié)果以Ti為基底,,表面覆蓋GO-COOH-,攜帶BMP-2和SP(Ti/GO-/SP/BMP-2)種植體周圍的新骨生成量要明顯多于Ti/SP/BMP-2,、Ti/GO-/BMP-2,、Ti/GO-/SP。這證明GO可以同時攜帶BMP-2和SP到達(dá)局部并緩慢釋放,,增加局部BMP-2和SP的有效劑量且發(fā)揮生物活性作用[89,90],。GO的這種雙重攜帶傳遞作用在口腔種植及骨愈合方面起著重要的作用。而體內(nèi)羥磷灰石(hydroxyapatite,,HA)是一種常用于骨組織修復(fù)的磷酸鈣陶瓷類材料,。在HA中加入GO,可以增強其在鈦板表面的附著強度;以HA為基底,,表面覆蓋GO的復(fù)合物(GO/HA)表現(xiàn)出比純HA更高的抗腐蝕性能,,細(xì)胞活性也更強。多層氧化石墨漿料靜電作用的強弱與氧化石墨烯表面官能團產(chǎn)生的負(fù)電荷相關(guān),。
石墨烯是一種在光子和光電子領(lǐng)域十分有吸引力的材料,,與別的材料相比有很多優(yōu)點[1]。作為一種零帶隙材料,,石墨烯的光響應(yīng)譜覆蓋了從紫外到THz范圍,;同時,石墨烯在室溫下就有著驚人的電子輸運速度,,這使得光子或者等離子體轉(zhuǎn)換為電流或電壓的速度極快,;石墨烯的低耗散率以及可以把電磁場能量限定在一定區(qū)域內(nèi)的性質(zhì),帶來了很強的光與石墨烯相互作用,。雖然還原氧化石墨烯(RGO)缺少本征石墨烯中觀測到的電子輸運效應(yīng)以及其它一些凝聚態(tài)物質(zhì)效應(yīng),,但其易于規(guī)模化制備,、性質(zhì)可調(diào)等優(yōu)異特性,,使其在傳感檢測領(lǐng)域展現(xiàn)出極大的應(yīng)用前景。
氧化石墨烯同時具有熒光發(fā)射和熒光淬滅特性,,廣義而言,,其自身已經(jīng)可以作為一種傳感材料,在生物,、醫(yī)學(xué)領(lǐng)域的應(yīng)用充分說明了這一點,。經(jīng)過功能化的氧化石墨烯/還原氧化石墨烯在更加的領(lǐng)域內(nèi)得到了應(yīng)用,特別在光探測,、光學(xué)成像,、新型光源、非線性器件等光電傳感相關(guān)領(lǐng)域有著豐富的應(yīng)用,。光電探測器是石墨烯問世后**早應(yīng)用的領(lǐng)域之一,。2009 年, Xia 等利用機械剝離的石墨烯制備出了個石墨烯光電探測器(MGPD)[2],如圖9.6,,以1-3 層石墨烯作為有源層,,Ti/Pd/Au 作源漏電極,Si 作為背柵極并在其上沉淀300nm 厚的SiO2,,在電極和石墨烯的接觸面上因為功函數(shù)的不同,,能帶會發(fā)生彎曲并產(chǎn)生內(nèi)建電場。氧化石墨是由牛津大學(xué)的化學(xué)家本杰明·C·布羅迪在1859年用氯酸鉀和濃硝酸混合溶液處理石墨的方法制得,。
使得*在單層中排列的水蒸氣可以滲透通過納米通道,。通過在GO納米片之間夾入適當(dāng)尺寸的間隔物來調(diào)節(jié)GO間距,,可以制造廣譜的GO膜,每個膜能夠精確地分離特定尺寸范圍內(nèi)的目標(biāo)離子和分子,。水合作用力使得溶液中氧化石墨烯片層間隙的距離增大到1.3 nm,,真正有效、可自由通過的孔道尺寸為0.9 nm,,計算出水合半徑小于0.45 nm的物質(zhì)可以通過氧化石墨烯膜片,,而水合半徑大于0.45 nm的物質(zhì)被截留,如圖8.4所示,。例如,,脫鹽要求GO的層間距小于0.7 nm,以從水中篩分水合Na +(水合半徑為0.36nm),。 通過部分還原GO以減小水合官能團的尺寸或通過將堆疊的GO納米片與小尺寸分子共價鍵合以克服水合力,,可以獲得這種小間距。與此相反,,如果要擴大GO的層間距至1~2 nm,,可在GO納米片之間插入剛性較大的化學(xué)基團或聚合物鏈(例如聚電解質(zhì)),從而使GO膜成為水凈化,、廢水回收,、制藥和燃料分離等應(yīng)用的理想選擇。 如果使用更大尺寸的納米顆?;蚣{米纖維作為插層物,,可以制備出間距超過2nm的GO膜,以用于生物醫(yī)學(xué)應(yīng)用(例如人工腎和透析),,這些應(yīng)用需要大面積預(yù)分離生物分子和小廢物分子,。石墨烯以優(yōu)異的聲、光,、熱,、電、力等性質(zhì)成為各新型材料領(lǐng)域追求的目標(biāo),。制造氧化石墨技術(shù)
當(dāng)超過某上限后氧化石墨烯量子點的性質(zhì)相當(dāng)接近氧化石墨烯,。制造氧化石墨技術(shù)
氧化石墨烯因獨特的結(jié)構(gòu)和性質(zhì)受到了人們的關(guān)注,其生物相容性的研究已經(jīng)積累了一定的研究基礎(chǔ),,但氧化石墨烯在實際應(yīng)用中仍然面臨很多困難和挑戰(zhàn),。首先,,氧化石墨烯制備方法的多樣性和生物系統(tǒng)的復(fù)雜性,,會影響其在體內(nèi)外的生物相容性,導(dǎo)致研究結(jié)果的不一致,,因此氧化石墨烯的生物相容性問題不能簡單歸納得出結(jié)論,,需要綜合多方面的因素進(jìn)行深入研究,。其次,氧化石墨烯的活性又取決于時間和本身的濃度,,其機理需要進(jìn)一步的研究,。,氧化石墨烯對機體的長期毒性以及氧化石墨烯進(jìn)入細(xì)胞的機制,、與細(xì)胞之間相互作用的機理,、細(xì)胞/體內(nèi)代謝途徑等尚不清晰。這些問題關(guān)乎氧化石墨烯在生物醫(yī)學(xué)領(lǐng)域應(yīng)用中的安全問題和環(huán)境風(fēng)險評價,,需要研究者們不斷地研究和探索,。制造氧化石墨技術(shù)