采用峰峰值法處理光譜數(shù)據(jù)時(shí),被測(cè)光程差的分辨率取決于光譜儀或CCD的分辨率,。我們只需獲得相鄰的兩干涉峰值處的波長(zhǎng)信息即可得出光程差,,不必關(guān)心此波長(zhǎng)處的光強(qiáng)大小,從而降低數(shù)據(jù)處理的難度,。也可以利用多組相鄰的干涉光譜極值對(duì)應(yīng)的波長(zhǎng)來分別求出光程差,,然后再求平均值作為測(cè)量光程差,這樣可以提高該方法的測(cè)量精度,。但是,,峰峰值法存在著一些缺點(diǎn):當(dāng)使用寬帶光源作為輸入光源時(shí),接收光譜中不可避免地疊加有與光源同分布的背景光,,從而引起峰值處波長(zhǎng)的改變,,引入測(cè)量誤差。同時(shí),,當(dāng)兩干涉信號(hào)之間的光程差很小,,導(dǎo)致其干涉光譜只有一個(gè)干涉峰的時(shí)候,此法便不再適用,。白光干涉膜厚測(cè)量技術(shù)可以實(shí)現(xiàn)對(duì)薄膜的大范圍測(cè)量和分析,。常用膜厚儀供應(yīng)鏈
基于表面等離子體共振傳感的測(cè)量方案,,利用共振曲線的三個(gè)特征參量—共振角、半高寬和反射率小值,,通過反演計(jì)算得到待測(cè)金屬薄膜的厚度,。該測(cè)量方案可同時(shí)得到金屬薄膜的介電常數(shù)和厚度,操作方法簡(jiǎn)單,。我們利用Kretschmann型結(jié)構(gòu)的表面等離子體共振實(shí)驗(yàn)系統(tǒng),,測(cè)得金膜在入射光波長(zhǎng)分別為632.8nm和652.1nm時(shí)的共振曲線,由此得到金膜的厚度為55.2nm,。由于該方案是一種強(qiáng)度測(cè)量方案,,測(cè)量精度受環(huán)境影響較大,且測(cè)量結(jié)果存在多值性的問題,,所以我們進(jìn)一步對(duì)偏振外差干涉的改進(jìn)方案進(jìn)行了理論分析,,根據(jù)P光和S光之間相位差的變化實(shí)現(xiàn)厚度測(cè)量。沈陽防水膜厚儀白光干涉膜厚測(cè)量技術(shù)可以應(yīng)用于電子顯示器中的薄膜厚度測(cè)量,。
薄膜作為重要元件,,通常使用金屬、合金,、化合物,、聚合物等作為其主要基材,品類涵蓋光學(xué)膜,、電隔膜,、阻隔膜、保護(hù)膜,、裝飾膜等多種功能性薄膜,,廣泛應(yīng)用于現(xiàn)代光學(xué)、電子,、醫(yī)療,、能源、建材等技術(shù)領(lǐng)域,。常用薄膜的厚度范圍從納米級(jí)到微米級(jí)不等,。納米和亞微米級(jí)薄膜主要是基于干涉效應(yīng)調(diào)制的光學(xué)薄膜,包括各種增透增反膜,、偏振膜,、干涉濾光片和分光膜等。部分薄膜經(jīng)特殊工藝處理后還具有耐高溫,、耐腐蝕,、耐磨損等特性,對(duì)通訊、顯示,、存儲(chǔ)等領(lǐng)域內(nèi)光學(xué)儀器的質(zhì)量起決定性作用[1-3],,如平面顯示器使用的ITO鍍膜,太陽能電池表面的SiO2減反射膜等,。微米級(jí)以上的薄膜以工農(nóng)業(yè)薄膜為主,,多使用聚酯材料,具有易改性,、可回收,、適用范圍廣等特點(diǎn)。例如6微米厚度以下的電容器膜,,20微米厚度以下的大部分包裝印刷用薄膜,,25~38微米厚的建筑玻璃貼膜及汽車貼膜,以及厚度為25~65微米的防偽標(biāo)牌及拉線膠帶等,。微米級(jí)薄膜利用其良好的延展,、密封、絕緣特性,,遍及食品包裝,、表面保護(hù)、磁帶基材,、感光儲(chǔ)能等應(yīng)用市場(chǎng),,加工速度快,市場(chǎng)占比高,。
利用包絡(luò)線法計(jì)算薄膜的光學(xué)常數(shù)和厚度,但目前看來包絡(luò)法還存在很多不足,,包絡(luò)線法需要產(chǎn)生干涉波動(dòng),,要求在測(cè)量波段內(nèi)存在多個(gè)干涉極值點(diǎn),且干涉極值點(diǎn)足夠多,,精度才高,。理想的包絡(luò)線是根據(jù)聯(lián)合透射曲線的切點(diǎn)建立的,在沒有正確方法建立包絡(luò)線時(shí),,通常使用拋物線插值法建立,,這樣造成的誤差較大。包絡(luò)法對(duì)測(cè)量對(duì)象要求高,,如果薄膜較薄或厚度不足情況下,,會(huì)造成干涉條紋減少,干涉波峰個(gè)數(shù)較少,,要利用干涉極值點(diǎn)建立包絡(luò)線就越困難,,且利用拋物線插值法擬合也很困難,從而降低該方法的準(zhǔn)確度。其次,,薄膜吸收的強(qiáng)弱也會(huì)影響該方法的準(zhǔn)確度,,對(duì)于吸收較強(qiáng)的薄膜,隨干涉條紋減少,,極大值與極小值包絡(luò)線逐漸匯聚成一條曲線,,該方法就不再適用。因此,,包絡(luò)法適用于膜層較厚且弱吸收的樣品,。白光干涉膜厚測(cè)量技術(shù)可以對(duì)薄膜的厚度和形貌進(jìn)行聯(lián)合測(cè)量和分析。
光學(xué)測(cè)厚方法集光學(xué),、機(jī)械,、電子、計(jì)算機(jī)圖像處理技術(shù)為一體,,以其光波長(zhǎng)為測(cè)量基準(zhǔn),,從原理上保證了納米級(jí)的測(cè)量精度。同時(shí),,光學(xué)測(cè)厚作為非接觸式的測(cè)量方法,,被廣泛應(yīng)用于精密元件表面形貌及厚度的無損測(cè)量。其中,,薄膜厚度光學(xué)測(cè)量方法按光吸收,、透反射、偏振和干涉等光學(xué)原理可分為分光光度法,、橢圓偏振法,、干涉法等多種測(cè)量方法。不同的測(cè)量方法,,其適用范圍各有側(cè)重,,褒貶不一。因此結(jié)合多種測(cè)量方法的多通道式復(fù)合測(cè)量法也有研究,,如橢圓偏振法和光度法結(jié)合的光譜橢偏法,,彩色共焦光譜干涉和白光顯微干涉的結(jié)合法等。白光干涉膜厚測(cè)量技術(shù)可以實(shí)現(xiàn)對(duì)薄膜內(nèi)部結(jié)構(gòu)的測(cè)量,。沈陽防水膜厚儀
白光干涉膜厚測(cè)量技術(shù)可以通過對(duì)干涉圖像的分析實(shí)現(xiàn)對(duì)薄膜的形貌變化的測(cè)量和分析,。常用膜厚儀供應(yīng)鏈
白光干涉時(shí)域解調(diào)方案需要借助機(jī)械掃描部件帶動(dòng)干涉儀的反射鏡移動(dòng),補(bǔ)償光程差,,實(shí)現(xiàn)對(duì)信號(hào)的解調(diào)[44-45],。系統(tǒng)基本結(jié)構(gòu)如圖2-1所示。光纖白光干涉儀的兩輸出臂分別作為參考臂和測(cè)量臂,,作用是將待測(cè)的物理量轉(zhuǎn)換為干涉儀兩臂的光程差變化,。測(cè)量臂因待測(cè)物理量而增加了一個(gè)未知的光程,參考臂則通過移動(dòng)反射鏡來實(shí)現(xiàn)對(duì)測(cè)量臂引入的光程差的補(bǔ)償。當(dāng)干涉儀兩臂光程差ΔL=0時(shí),,即兩干涉光束為等光程的時(shí)候,,出現(xiàn)干涉極大值,可以觀察到中心零級(jí)干涉條紋,,而這一現(xiàn)象與外界的干擾因素?zé)o關(guān),,因而可據(jù)此得到待測(cè)物理量的值。干擾輸出信號(hào)強(qiáng)度的因素包括:入射光功率,、光纖的傳輸損耗,、各端面的反射等。外界環(huán)境的擾動(dòng)會(huì)影響輸出信號(hào)的強(qiáng)度,,但是對(duì)零級(jí)干涉條紋的位置不會(huì)產(chǎn)生影響,。常用膜厚儀供應(yīng)鏈