與石墨烯量子點(diǎn)類似,,氧化石墨烯量子點(diǎn)也具備一些特殊的性質(zhì)。當(dāng)GO片徑達(dá)到若干納米量級的時候?qū)霈F(xiàn)明顯的限域效應(yīng),,其光學(xué)性質(zhì)會隨著片徑尺寸大小發(fā)生變化[48],,當(dāng)超過某上限后氧化石墨烯量子點(diǎn)的性質(zhì)相當(dāng)接近氧化石墨烯,這就提供了一種通過控制片徑尺寸分布改變氧化石墨烯量子點(diǎn)光響應(yīng)的手段,。與GO類似,,這種pH依賴來源于自由型zigzag邊緣的質(zhì)子化或者去質(zhì)子化。同樣,,這也可以解釋以GO為前驅(qū)體通過超聲-水熱法得到的石墨烯量子點(diǎn)的光發(fā)射性能,,在藍(lán)光區(qū)域其光發(fā)射性能取決于zigzag邊緣狀態(tài),而綠色的熒光發(fā)射則來自于能級陷阱的無序狀態(tài),。通過控制氧化石墨烯量子點(diǎn)的氧化程度,,可以控制其發(fā)光的波長。這一類量子點(diǎn)的光學(xué)性質(zhì)類似于GO,,這說明只要片徑小于量子點(diǎn),,都會產(chǎn)生同樣的光學(xué)效應(yīng),也就是在結(jié)構(gòu)上存在一個限域島狀SP2雜化的碳或者含氧基團(tuán)在功能化過程中引入的缺陷狀態(tài),。石墨烯微片的缺陷有時使其無法滿足某些復(fù)合材料在抗靜電或?qū)щ?、隔熱或?qū)岬确矫娴奶厥庖蟆jP(guān)于氧化石墨導(dǎo)電
太赫茲技術(shù)可用于醫(yī)學(xué)診斷與成像,、反恐安全檢查,、通信雷達(dá),、射電天文等領(lǐng)域,將對技術(shù)創(chuàng)新,、國民經(jīng)濟(jì)發(fā)展以及**等領(lǐng)域產(chǎn)生深遠(yuǎn)的影響,。作為極具發(fā)展?jié)摿Φ男录夹g(shù),2004年,,美國**將THz科技評為“改變未來世界的**技術(shù)”之一,,而日本于2005年1月8日更是將THz技術(shù)列為“國家支柱**重點(diǎn)戰(zhàn)略目標(biāo)”**,,舉全國之力進(jìn)行研發(fā)。傳統(tǒng)的寬帶THz波可以通過光整流,、光電導(dǎo)天線,、激光氣體等離子體等方法產(chǎn)生,窄帶THz波可以通過太赫茲激光器,、光學(xué)混頻,、加速電子,、光參量轉(zhuǎn)換等方法產(chǎn)生。進(jìn)口氧化石墨生產(chǎn)廠家氧化石墨烯(GO)的厚度只有幾納米,,具有兩親性,。
工業(yè)化和城市化導(dǎo)致天然地表水體中的有毒化學(xué)品排放,,其中包括酚類,、油污、,、農(nóng)藥和腐植酸等有機(jī)物,,這些污染物在制藥,石化,,染料,,農(nóng)藥等行業(yè)的廢水中檢測到,。許多研究集中在從水溶液中有效去除這些有毒污染物,,如光催化,吸附和電解54-57,。在這些方法中,由于吸附技術(shù)低成本,,高效率和易于操作,,遠(yuǎn)遠(yuǎn)優(yōu)于其他技術(shù),。與傳統(tǒng)的膜材料不同,GO作為碳質(zhì)材料與有機(jī)分子的相互作用機(jī)理差異很大,。新的界面作用可在GO膜內(nèi)引入獨(dú)特的傳輸機(jī)制,,導(dǎo)致更有效地從水中去除有機(jī)污染物。石墨烯和GO對有機(jī)物的吸附機(jī)理的研究表明,,疏水作用、π-π鍵交互作用,、氫鍵,、共價鍵和靜電相互作用會影響石墨烯和GO對有機(jī)物的吸附能力,。
在GO還原成RGO的過程中,材料的導(dǎo)電性,、禁帶特性和折射率都會發(fā)生連續(xù)變化,,形成獨(dú)特而優(yōu)異的可調(diào)諧型新材料。2014年,,澳大利亞微光子學(xué)中心賈寶華教授領(lǐng)導(dǎo)的科研小組發(fā)現(xiàn)在用激光直寫氧化石墨烯薄膜形成微納米結(jié)構(gòu)的過程中,,材料的非線性可以實現(xiàn)激光功率可控的動態(tài)調(diào)諧。與傳統(tǒng)的非線性材料相比,,氧化石墨烯的三階非線性高出了整整1000倍,,隨著氧化石墨烯中的氧成分逐漸減少,而非線性也呈現(xiàn)出被動態(tài)調(diào)諧的豐富變化,。不但材料的非線性系數(shù)的大小產(chǎn)生改變,,其非線性吸收和折射率也發(fā)生變化,并且,,這種豐富的非線性特性完全可以實現(xiàn)動態(tài)操控,。氧化石墨可以通過用強(qiáng)氧化劑來處理石墨來制備。
氧化石墨烯因獨(dú)特的結(jié)構(gòu)和性質(zhì)受到了人們的關(guān)注,,其生物相容性的研究已經(jīng)積累了一定的研究基礎(chǔ),,但氧化石墨烯在實際應(yīng)用中仍然面臨很多困難和挑戰(zhàn)。首先,,氧化石墨烯制備方法的多樣性和生物系統(tǒng)的復(fù)雜性,,會影響其在體內(nèi)外的生物相容性,導(dǎo)致研究結(jié)果的不一致,,因此氧化石墨烯的生物相容性問題不能簡單歸納得出結(jié)論,,需要綜合多方面的因素進(jìn)行深入研究,。其次,,氧化石墨烯的活性又取決于時間和本身的濃度,,其機(jī)理需要進(jìn)一步的研究。,,氧化石墨烯對機(jī)體的長期毒性以及氧化石墨烯進(jìn)入細(xì)胞的機(jī)制,、與細(xì)胞之間相互作用的機(jī)理、細(xì)胞/體內(nèi)代謝途徑等尚不清晰,。這些問題關(guān)乎氧化石墨烯在生物醫(yī)學(xué)領(lǐng)域應(yīng)用中的安全問題和環(huán)境風(fēng)險評價,,需要研究者們不斷地研究和探索。石墨烯在可見光范圍內(nèi)的光吸收系數(shù)近乎常數(shù),。合成氧化石墨粉體
調(diào)控反應(yīng)過程中氧化條件,,減少面內(nèi)大面積反應(yīng),減少缺陷,,提升還原效率,。關(guān)于氧化石墨導(dǎo)電
由于GO表面具有較高的親和力,蛋白質(zhì)可以吸附在GO表面,,因此在生物液體中可以通過蛋白質(zhì)來調(diào)節(jié)GO與細(xì)胞膜的相互作用,。如,血液中存在著大量的血清蛋白,,可能會潛在的影響GO的毒性,。Ge與其合作者[16]利用電子顯微鏡技術(shù)就觀察到牛血清蛋白可以降低GO對細(xì)胞膜的滲透性,抑制了GO對細(xì)胞膜的破壞,,同時降低了GO的細(xì)胞毒性,。基于分子動力學(xué)研究分析,,他們推斷可能是由于GO-蛋白質(zhì)之間的作用削弱了GO-磷脂之間的相互作用,。與此同時,GO對人血清蛋白的影響也被其他科研工作者所發(fā)現(xiàn),,特別是他們觀察到了GO可以抑制人血清蛋白與膽紅素之間的作用,。因此,GO與血清蛋白之間是相互影響的,。關(guān)于氧化石墨導(dǎo)電